Low-power Logic Styles for Full-adder Circuits1
نویسندگان
چکیده
This paper contributes to a better knowledge of the behaviour of conventional CMOS and CPL full-adder circuits when low voltage, low power or small power-delay products are of concern. It completes and overcomes limitations of previous studies as optimal power-delay curves, for CPL and CMOS full adders, have been built up using an automatic sizing tool based on statistical optimization. Supply voltages of 3.3V and 1.5V have been considered. This study shows that full adders with minimum power consumption are accessible by using the conventional CMOS design style. As a counterpart, minimum delay full adders are obtained with CPL.
منابع مشابه
Performance evaluation of the CMOS Full adders in TDK 90 nm Technology
This paper presents power analysis of the full adder cells reported as having a low PDP (Power Delay Product), by means of speed, power consumption and area. These full adders were designed upon various logic styles to derive the sum and carry outputs. Two new high-speed and low-power full adder cells designed with an alternative internal logic structure and pass-transistor logic styles that le...
متن کاملDesigning of Full Adder Circuits for Low Power
Full adders are important components in applications such as digital signal processing (DSP) architecture, and microprocessors. Over the past decade, several adiabatic logic styles have been reported. This paper deals with the design of a 1-bit full adder using adiabatic logic style (DTGAL), which are derived from static CMOS logic, without a large change. This paper also proposes a new design ...
متن کاملSymmetrical, Low-Power, and High-Speed 1-Bit Full Adder Cells Using 32nm Carbon Nanotube Field-effect Transistors Technology (TECHNICAL NOTE)
Carbon nanotube field-effect transistors (CNFETs) are a promising candidate to replace conventional metal oxide field-effect transistors (MOSFETs) in the time to come. They have considerable characteristics such as low power consumption and high switching speed. Full adder cell is the main part of the most digital systems as it is building block of subtracter, multiplier, compressor, and other ...
متن کاملPropose, Analysis and Simulation of an All Optical Full Adder Based on Plasmonic Waves using Metal-Insulator-Metal Waveguide Structure
This paper proposes a full adder with minimum power consumption and lowloss with a central frequency of 1550nm using plasmonic Metal-Insulator-Metal (MIM)waveguide structure and rectangular cavity resonator. This full adder operates based onXOR and AND logic gates. In this full adder, the resonant wave composition of the firstand second modes has been used and we have ob...
متن کاملEvaluation of Power Delay Product for Low Power Full Adder Circuits based on GDI Logic Cell using Mentor Graphics
This paper presents high speed and low power full adder cells designed with an alternative internal logic structure and Gate Diffusion Input (GDI) logic styles and hybrid CMOS logic style that lead to have a reduced Power Delay Product (PDP). The main design objective for this adder module is not only providing low-power dissipation and high speed but also full-voltage swing. In the first desig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999